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Abstract
This chapter reviews how rational customers or buyers should respond to fi rms’ pricing deci-
sions and how fi rms should optimize prices as a consequence of these strategic responses. The 
key departure from standard economic and marketing pricing research is that either customers 
or fi rms are simultaneously faced with other operational choices, such as capacity sizing and 
inventory control, which are of central interest to operations management researchers. The 
chapter covers four broad areas and it is intended to serve as a selective rather than comprehen-
sive review of the extensive literature.

1.  Introduction
The main purpose of this chapter is to provide a selective review of pricing models, with 
an emphasis on issues that are of interest to operations management researchers. Apart 
from pricing decisions, these models tend to explicitly incorporate supply-side consid-
erations that refl ect physical characteristics of production processes, such as inventory 
control, capacity constraints and demand uncertainty. In such settings, there are two 
broad questions: how should rational customers respond to fi rms’ pricing decisions, and 
how should fi rms optimize prices to maximize profi ts?

In this review, we focus on the following four broad areas. The fi rst two areas cover 
pricing and inventory decisions, and the last two areas cover pricing in the presence of 
capacity constraints.

1. EOQ inventory models The classic economic ordering quantity (EOQ) model is an 
inventory model that is typically applied to products with a relatively stable con-
sumption pattern over time. One main advantage is that this model applies to the 
buyer as both a consumer and producer. The model shows how the buyer should 
react operationally in response to the seller’s pricing decisions. On the consumer side, 
the model addresses questions such as optimal shopping frequency and stockpiling 
decisions. On the producer side, the model addresses issues such as fi xed costs (e.g. 
due to batch production or transportation costs) and inventory carrying costs. This 
class of models studies producers’ pricing and inventory decisions as well as con-
sumers’ purchase and inventory decisions in response to sellers’ pricing decisions.

2. Newsvendor inventory models The newsvendor model is another classic inventory 
model in operations management. It is ideally suited for analyzing a business-to-
business setting where a retailer must cope with demand uncertainty by ordering 
from a manufacturer that has long production lead times before the short selling 
season begins. The central dilemma captured by newsvendor models is the tradeoff 
between excess inventory that remains unsold and profi t losses due to insufficient 
orders. Here, we explore how pricing (demand-side control) can complement inven-
tory ordering decisions (supply-side control) to improve the retailer’s profi ts.
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3. Dynamic pricing models For many products, the fi rm has a fi nite capacity that 
cannot be replenished. Examples include airplane tickets, hotel rooms, and even 
fashion apparel. In these settings, revenue management tactics are commonly used 
to optimize prices over time in response to sales performance. Apart from dynamic 
pricing by fi rms, we also review models that consider consumers’ dynamic responses 
to these prices, i.e. whether they should buy or wait for discounts. Here, we focus on 
the effect of fi nite capacity, which creates additional considerations for fi rms (since 
unsold units have little to no value) as well as for consumers (since the item may be 
sold out if the consumer waits too long).

4. Queueing models In operations management, queueing models are typically used to 
capture capacity constraints in service settings. Unlike the dynamic pricing models 
above (where a customer may either get the item or not), queueing models admit 
intermediate outcomes. Here, the waiting time dimension is used to refl ect various 
forms of service degradation associated with excess demand, relative to available 
capacity. Pricing can then be used to infl uence demand to improve profi ts for the 
fi rm. These models study fi rms’ pricing decisions in queueing contexts, and also 
address consumers’ decisions (e.g. whether to enter the queue given the price, how 
much ‘work’ to send to the queue, which priority level to choose, and so on).

In each of the areas listed above, we shall highlight the signifi cance of operational 
considerations. One common theme across all areas is that consumers are active 
 decision-makers and respond strategically to these operational issues (so we refer to them 
as rational or strategic consumers). For example, in EOQ models, consumers choose 
purchase quantities and make stockpiling decisions, and in the dynamic pricing models, 
consumers choose the timing of their purchases. As a result, fi rms’ pricing decisions serve 
as an important strategic lever to shape consumer behavior and optimize profi ts. To draw 
a stark comparison, we occasionally compare the above models with their counterparts 
that do not have the corresponding operational issues. The next four sections review the 
four areas listed above. We provide some closing remarks and suggest broad directions 
for future research in the concluding section.

2.  EOQ-based pricing models
The standard economic ordering quantity (EOQ) model is perhaps one of the most fun-
damental models in operations management. In the standard EOQ setup, a seller charges 
a time-invariant price p. A rational customer who has a constant consumption r per unit 
time must decide how much (Q) to order to minimize her total costs over time.1 The order-
ing policy must consider three cost components: the purchase cost (p per unit); the fi xed 
cost in placing an order, such as traveling cost (denoted by K); and the cost associated 
with inventory holding (h per unit per time period). This implicitly assumes that holding 
cost h does not depend on price or quantity purchased. As a result, this model does not 
account for the cost of capital associated with holding inventory (e.g. fi nancial holding 
cost).

1 There is an equivalent utility maximization problem. Since the consumption rate is exogenous 
and fi xed over time, the ordering policy that minimizes the total cost also maximizes the utility.
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The rational customer’s decision is to choose an optimal ordering quantity Q to mini-
mize the total cost (TC) per unit time. Note that the rational customer places orders at 
an interval of Q/r and at the time when the inventory is zero. The objective function of 
the optimization problem is

 TC(Q) 5 p 
# r 1

Kr
Q

1 h 
#

 

Q

2
 (26.1)

where the fi rst term on the left-hand side gives the purchase cost per unit time, the second 
term is the fi xed cost per unit time and the last term is the average holding cost per unit 
time. Solving the problem yields the optimal economic ordering quantity as follows:

 Q* 5 Å
2Kr

h
 (26.2)

Note that the optimal economic ordering quantity does not depend on the fi rm’s pricing 
decision p even though the optimal total cost increases linearly with p. Let us illustrate 
the above formula with a numerical example. Let the consumption rate (r) be 5 units 
per month, the setup cost per order (K) be $10, and the holding cost be $1 per unit per 
month. Using equation (26.2), we compute the optimal ordering quantity Q* as 10 units 
per order. That is, the consumer must place an order of 10 units every two months.

Ho et al. (1998) extend the EOQ model to investigate how a rational customer should 
strategically respond when the fi rm’s pricing policy fl uctuates over time (i.e. p is a 
random variable). The fl uctuation of the price is described by a time-invariant prob-
ability distribution that consists of S scenarios (i.e. a general discrete distribution with 
pricing scenario ps occurs with a probability ps). The rational customer has knowledge 
of the price distribution but is unaware of the price realization before incurring the fi xed 
cost (or in their context a shopper traveling to visit a grocery store). Once the fi xed cost 
is sunk, the customer observes the price ps and then chooses purchase quantity Qs. Let 
mP 5 gS

s51ps
#

 ps and s2
P 5 gS
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#

 (ps 2 mp ) 2 be the mean and variance of the distri-
bution respectively. The customer’s ordering policy is to decide how much to order under 
each pricing scenario s, Qs. As before, the total cost per unit time under pricing scenario 
s is given by
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It can be shown that the long-run average cost per unit time is given by
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The customer must select a purchase quantity under each scenario s in order to minimize 
the above long-run average cost per unit time.

The optimal ordering quantity under pricing scenario s shown to be

 Q*s 5 Å
2K*r

h
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h
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 (ps 2 mP )  (26.5)
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where K* 5 K 2  (  r/2h)  
#

 s2
P. Consequently, the expected economic ordering quantity 

is given as follows:

 m*Q 5 Å
2K*r

h
  (26.6)

Note that the optimal ordering quantity is no longer independent of price once the latter 
is random. It is now linear in price ps. This linear ordering rule states that the ordering 
quantity in scenario s is proportional to the difference between the reference price (the 
average price µP ) and the price of scenario ps. Interestingly, the expected ordering quan-
tity is decreasing in the variance of the price (s2

P). So a higher price fl uctuation induces 
the customer to place more but smaller orders by providing an option value (or order-
ing fl exibility) that effectively reduces the fi xed cost of placing an order. Consequently, 
the rational customer shops more often and places a smaller order when variance of the 
price increases. The authors test these predictions on an extensive dataset from a grocery 
chain and fi nd strong support for them. The authors also extend the model by allowing 
the customer to adjust her consumption rate r in response to price fl uctuation. They 
show that it is optimal for the customer to increase her consumption rate if variance of 
the price increases.2

Let us use the same example above to examine the infl uence of price variability. Assume 
there are two pricing scenarios (i.e. regular ($10) and discounted ($8)), each occurring 
with equal probability of 0.5. Consequently, the price variance is s2

P 5 1 and the revised 
setup cost is K* 5 10 2  (5/2.1) #  1 5 7.5. Using equation (26.6), the average ordering 
quantity becomes 8.67 units, which is smaller than the average ordering quantity of ten 
units under no price variability. Given the same consumption rate, the consumer must 
shop more frequently.

Assunção and Meyer (1993) consider a similar problem but in a shopping context 
where there is no fi xed cost associated with placing an order (e.g. K 5 0). In their setting, 
the customer pays periodic visits to the store (and hence the travel costs are sunk) and 
must decide in each period how many units to order and consume given a current inven-
tory holding level (Z) and observed price (p). The price fl uctuation is assumed to follow 
a Markov process (i.e. the immediate future price is only a function of the most recent 
observed price). Formally, the customer must solve the following dynamic programming 
problem:

 V(Z, p) 5 max
Q, r

 {U(r) 2 p 
#

 Q 2 h(Z 1 Q 2 r) 1 b 
#

 E [V (Z 1 Q 2 r, pt11 )   0  p 0  } 
(26.7)

where U(.) is the utility from consumption and is concave in r and h(.) is the holding 
cost of inventory. The authors provide structural results on the optimal purchase and 
consumption policies. They show that the customer should order in a period only if the 
current inventory level Z is below a threshold level I (p) (which is a function of price only). 

2 It is assumed that utility is concave in consumption and the customer maximizes the net 
utility, which is the difference between utility from consumption per unit time and the long-run 
average cost per unit time.
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The optimal ordering quantity is given by I (p) 2 Z (i.e. order up to I (p)). The optimal 
consumption is shown to be always increasing in the current inventory (Z) level independ-
ent of the observed price p.3 The customer buys less and consumes more if the holding cost 
increases. Also, both purchase and consumption are decreasing in the observed price p as 
long as some sensible assumptions about future price expectations hold.

Kunreuther and Richard (1971) extend the EOQ model to consider the situation where 
the customer is a retailer who must simultaneously decide how many units to order (Q) 
from the distributor and how much to charge the product to a group of end customers. 
The end-customer demand per unit time and the retail price have a one-to-one mapping 
so that the retailer’s pricing decision is mathematically equivalent to its consumption or 
sales rate decision (r). Formally, the retailer’s profi t function is given by

 P(Q, r) 5 R(r) 2
K 
#

 r
Q

2
h 
#

 Q

2
2 p 

#
 r (26.8)

where R(r) is the retailer’s revenue when it sells r units per period. Differentiating the 
profi t function with respect to Q and r yields the following two simultaneous equations:
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where (R(r) /dr)  is the marginal revenue per unit time from the last unit sold when the 
sales rate is r*. The authors use the above results to investigate the costs of sequential 
decision-making (or lack of coordination). They consider an environment where the 
marketing department fi rst chooses r* ignoring the fi xed and inventory holding costs. The 
purchase department then chooses an ordering quantity taking the sales rate r* as given 
(i.e. solving the standard EOQ problem). They fi nd that the costs of sequential decision-
making can be high if the product of fi xed cost and holding cost K · h is high and the 
optimal sales rate r* is small.

Blattberg et al. (1981) show that an economic reason that a retailer might offer special 
sales or deals on its products is the transfer of inventory holding costs from the fi rm to its 
customers. Their model framework consists of two sub-models, one for retailer and one 
for the customer. The idea here is to solve for an equilibrium with each party seeking to 
minimize its total costs. In their customer model (and with usual notations), customer i 
chooses a order quantity Qi in order to minimize the total cost over a purchasing cycle 
of Qi /ri given below:

 TC(Qi ) 5
hi 
#

 Qi

2
 
#

 

Qi

ri
2 d 

#
 Qi (26.11)

where the second term of the left-hand side is the total cost saving due to price deals d over 
the purchase cycle. Note that there is no fi xed cost associated with placing an order (i.e. 

3 This positive relationship between consumption and inventory is used by Bell et al. (2002) in 
their model of customer behavior.
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K 5 0). Solving, we obtain the optimal ordering quantity (Q*) and the optimal purchase 
period (t*) as follows:

 Q*i 5
d 
#

 ri

hi
 (26.12)

 t* 5
d
hi

 (26.13)

Customers are segmented into two groups: the fi rst with high holding costs (hH) and the 
second with lower holding costs (hL). All customers have the same consumption rate r. 
There is a total of N customers of which an a (0 < a < 1) fraction has low holding costs. 
It is assumed that only customers with low holding costs buy on deals. Consequently, the 
aggregate quantity bought on deal is

 QD 5 a 
#

 N 
#

 Q*2 5 a 
#

 N 
#

 

d 
#

 r
hL

 (26.14)

In their retailer model setup, the retailer must choose a deal amount d and the length of 
reordering period T (i.e. retailer’s ordering quantity divided by its sales rate) in order to 
minimize its total cost per unit time. The total cost consists of a fi xed cost per order KR, 
a holding cost (hR per unit per unit time), and costs associated with sales. They show that 
the optimal deal amount and the reorder period are given as follows:

 d* 5 c KR 
#

 hL

N 
#

 r(a 1 (1 2 a )  
#
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 (26.15)

 T* 5
d*

hL
 (26.16)

Besides the optimal deal amount d*, the optimal dealing frequency (f *) is the number of 
deals offered in any given time interval t and is simply (t/t*) 5 t 

# (  hL/d*) . The predic-
tions of the overall model are: (1) the deal amount increases when the holding cost to the 
customer (hL) and the fi xed cost (KR) cost increase. It decreases as the the total consump-
tion rate (N 

#
 r)  increases; and (2) the deal frequency increases when the holding cost (hL) 

and the total consumption rate increase and when the fi xed cost decreases. The authors 
fi nd support for these predictions using a panel dataset and hence establish the transfer 
of inventory explanation as a plausible rationale for price promotion.

Jeuland and Narasimhan (1985) consider a similar problem and study how a monopo-
list fi rm should set its price when it serves two groups of customers with different con-
sumption rates. Each group of customers i has a consumption rate ri conditioned on the 
fi rm’s price p given as follows:

 ri 5 ai 2 p (26.17)

where a1 .  a2 .  0. That is, given a price p, group 1 customers consume more than 
group 2 customers. A key assumption is that the high-demand (i.e. group 1) customers 
have a higher inventory holding cost so that the two groups shop differently when faced 
with price promotion. Customers are assumed to make periodic visits to the fi rm so that 
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travel costs are sunk (i.e. customers have zero fi xed costs, K 5 0). The fi rm gives a dis-
count d once every T periods.

Because of high inventory holding cost, group 1 customers never stockpile or forward-
buy, so they purchase and consume in a deal period a quantity given by r1d 5 a1 2 p 1 d. 
During nondeal periods, these customers purchase and consume r1n 5 a1 2 p. Group 2 
customers always forward-buy during the deal period for consumption in all periods. 
These customers consume at a rate of r2 5 a2 2 p 1 d 2 (hT/2) in every period, where 
h is the inventory cost per unit per period.4 The authors establish that it is indeed possible 
and profi table for the fi rm to price-discriminate between the two groups of customers by 
offering promotion deals occasionally. This work provides a theoretical reason why a fi rm 
might want to give discount deals in practice. It highlights a necessary condition (i.e. high 
consumption rate must be accompanied by high inventory cost) for such a promotion 
strategy to be successful.

Bell et al. (2002) extend Jeuland and Narasimhan’s model and study how homogeneous 
fi rms should engage in price promotion in a competitive setting where customers might 
increase their consumption as a result of inventory holding. They consider a two-period 
model in which rational customers must decide how much to buy in each period. A cus-
tomer has two choices, buy either one unit or two units in the fi rst period depending on 
the observed price. If the customer buys one unit, she consumes one unit and must incur 
a fi xed cost K to visit the store again in the second period. In she buys two units, there are 
two possible consumption scenarios. In the fi rst consumption scenario (which occurs with 
probability (1 2 u)), the customer consumes one unit and must incur a cost h to hold the 
second unit for consumption in the second period. The customer does not visit the store in 
the second period. In the second consumption scenario (which occurs with probability u), 
the customer consumes two units and must incur a cost K to visit the store in the second 
period. The authors show that the symmetric equilibrium profi ts for each fi rm are

 P* 5
v 
#

 [v 1 h(1 2 u ) ]  
#

 N
[v 2 h(1 2 u ) ]  

#
 n

 (26.18)

where v is the per unit utility of the product to a customer, N is the total number of cus-
tomers and n is the total number of fi rms in the industry.

It can be readily shown that equilibrium profi ts decrease as u increases. That is, 
increased consumption effect due to price fl uctuation intensifi es price competition. This 
phenomenon occurs because the increased consumption leads to deeper price discounts 
and an increase in the frequency of promotions. They examine both predictions using 
purchase data of eight categories from a grocery chain. Some categories (e.g. bacon, soft 
drinks etc.) are likely to have a higher consumption effect (i.e. higher u) while others (e.g. 
bathroom tissue, detergent etc.) are likely to have a smaller consumption effect (a lower 
u). Overall, they fi nd support for their predictions.

3.  Newsvendor-based pricing models
Like the EOQ model, the newsvendor model is a celebrated and classic model in opera-
tions management. Here, we consider a retailer who must order a product with a short 

4 Note that the average inventory holding cost reduces the consumption rate.
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life cycle from a distributor in order to serve a group of end customers. The end-customer 
demand is random, following a well-behaved cumulative distribution given by F(.) and 
a density function and distribution given by f(.) and F(.) respectively. The retailer buys 
the product at price w and sells it at price p. It has a short and well-defi ned selling cycle 
so that any unsold product must be salvaged. The retailer must place an order of size Q 
before it knows the actual demand. The retailer faces two possible scenarios after the 
demand realization.5 In the fi rst scenario, the actual demand is higher than the order. 
Here the retailer experiences a foregone profi t of (p 2 w) per unit of unfulfi lled demand. 
In the second scenario, the retailer has an overstock of supply because the actual demand 
is smaller than the order. Consequently the fi rm incurs a cost of (w 2 s) per unit of leftover 
supply where s is the unit salvage value of the product. Let the unit underage cost Cu 5 (p 
2 w) and the unit overage cost Co 5 (w 2 s). Formally, the retailer chooses an ordering 
quantity in order to minimize the total expected costs as follows:

 EC(Q) 5 Co3
Q

0

(Q 2 q) # f (q) # dq 1 Cu3
`

Q

(q 2 Q) # f (q) # dq (26.19)

It can be shown that the optimal ordering quantity (Q*) is given by

 F(Q*) 5 P(D # Q*) 5
Cu

Cu 1 Co
 (26.20)

That is, the retailer should order at a level Q* that sets the probability of serving all cus-
tomers to the ratio given by (Cu/Cu 1 Co )  (i.e. the relative underage cost). Readers are 
referred to Porteus (2002) for more details. Let us use a numerical example to illustrate 
the formula given in equation (26.20). Let w 5 $2, p 5 $4 and s 5 $1. Then Cu 5 4 2 
2 5 $2 and Co 5 2 2 1 5 $1. Consequently, we have F(Q*) 5 (2/2 1 1) 5 (2/3). If 
demand follows a normal distribution with mean 100 and standard deviation of 20, then 
the optimal ordering quantity becomes Q* 5 100 1 0.435 # 20 5 108.7 units.

Petruzzi and Dada (1999) extend the standard newsvendor problem by allowing 
the retailer to choose the stocking quantity and price simultaneously. Randomness in 
demand is captured in either an additive or a multiplicative form as follows:

 D(p, e ) 5 y(p) 1 e 5 a 2 b # p 1 e (26.21)

 D(p, e ) 5 y(p) # e 5 a # p2b # e (26.22)

where e has a support [L, H], a density function f(.), and a distribution function F(.). 
It is assumed that leftovers are disposed at the unit cost a and shortages experience 
a per-unit penalty cost of b. If a is negative (i.e. leftovers have a salvage value), then 
 0  a 0  5 s (as defi ned above). Also, if b . 0, there is a loss in goodwill (i.e. the basic news-
vendor problem assumes b 5 0). That is, the underage and overage costs are given as 
Cu 5 (p 2 w 1 b)  and Co 5 w 1 a respectively.

The profi t P(Q,P)  can be written as

5 We assume both order and demand are continuous so that the probability that the order is 
identical to demand is zero.
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  P(Q, p) 5 ep 
#

 D(p, e ) 2 w 
#

 Q 2 a 
#

 [Q 2 D(p, e ) ] if  D(p, e )  #  Q
p 
#

 Q 2 w 
#

 Q 2 b 
#

 [D(p, e ) 2 Q ] if  D(p, e )  .  Q
 (26.23)

Consider the additive case and defi ne the stocking factor z 5 Q 2 y(p) . Then the profi t 
function can be rewritten as a function of (z, p) as

  P(z, p) 5 eP 
#

 [y(p) 1 e ] 2 w 
#

 [y(p) 1 z ] 2 a 
#

 [z 2 e ] if  e #  z
p 
#

 [y(p) 1 z ] 2 w 
#

 Q [y(p) 1 z ] 2 b 
#

 [e 2 z ] if  e .  z
 (26.24)

Expected profi t is:

 
E [P(z,  p) ] 5 3
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L

(p 
#

 [y(p) 1 x ] 2 a 
#

 [z 2 x ] )  
#

 f (x)  
#

 dx

                       1 3
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z

(p 
#

 [y(p) 1 z ] 2 b 
#

 [x 2 z ] )  
#

 f (x)  
#

 dx 2 w 
#

 [y(p) 1 z ]
 (26.25)

 5 F(p) 2 L(z, p)  (26.26)

where F(p) 5 (p 2 c)  
#

 [y(p) 1 E(e) ] and L(z, p) 5 Co 
#

 U(z) 1 Cu 
#

 V (z)  where 
U(z) 5 ez

L
(z 2 x)  

#
 f (x)  

#
 dx and V (z) 5 eH

z
(x 2  z)  

#
 f (x)  

#
 dx.

Let po 5 (a 1 b # w 1 E(e) /2b) . If y(p) 5 a 2 b 
#

 p, then the optimization problem 
can be solved sequentially as follows:

1. For a fi xed z, the optimal price is determined uniquely as p* 5 p(z) 5

po 2 (V (z) /2b) .
2. The optimal stocking quantity Q* is given by Q* 5 y(p*) 1 z*, where p* is deter-

mined as above and z* is determined as follows:
 (a)  If F(.) is an arbitrary distribution, an exhaustive search over all possible values 

of z in the region [L, H ] will determine z*.
 (b)  If F(.) satisfi es the condition that 2r (z) 2 1 (  dr(z) /dz)  .  0, where 

r(z) 5 ( f (z) / [1 2 F( . ) ] )  is the hazard rate, then z* is the largest z in the 
region [L, H] that satisfi es (dE(P(z, p(z) ) ) /dz) 5 0.

 (c)  If the condition for (b) is met and a 2 b(w 2 2a ) 1 L . 0, then z* is the 
unique z that satisfi es (dE(P(z, p(z) ) ) /dz) 5 0.

In the multiplicative case, we have D(p, e ) 5 y(p)  
#

 e 5 a 
#

 p2b
 
#

 e. Let z 5 (Q/y(p) ) , 
then the expected profi t function can be rewritten like before as a sum of a deterministic 
profi t term and an expected loss function term:

 E [P(z, p) ] 5 F(p) 2 L(z, p)  (26.27)

where F(p) 5 (p 2 c)  
#

 y(p)  
#

 E(e)  and L(z, p) 5 y(p)  
#

 [Co 

#
 U(z) 1 Cu 

#
 V (z) ].

Let p1 5 (b # w/b 2 1). As before, the optimization problem can be solved sequen-
tially as follows:

1. For a fi xed z, the optimal price is determined uniquely as p* 5 p(z) 5 p1 1 (  b/b 2 1). 
[ (Co 

#
 U(z) 1 b # V (z) /E(e) 2 V (z) ) ].
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2. The optimal stocking quantity Q* is given by Q* 5 y(p*)  
#

 z*, where p* is deter-
mined as above and z* is determined as follows:

 (a)  If F(.) is an arbitrary distribution, an exhaustive search over all possible values 
of z in the region [L, H] will determine z*.

 (b)  If F(.) satisfi es the condition that 2r(z) 2 1 (dr(z) /dz)  .  0, where 
r(z) 5 (  f (z) / [1 2 F( . ) ] )  is the hazard rate and b $ 2, then z* is the unique z 
that satisfi es (dE(P(z, p(z) ) ) /dz) 5 0.

The authors provide a unifying interpretation of the above results by introducing the 
notion of a base price and showing that the optimal price in both the additive and multi-
plicative cases can be interpreted as the base price plus a premium.

Su and Zhang (2008) extend the standard newsvendor problem by allowing the retailer 
to choose the price and customers to choose their timing of purchase (either during the 
selling season or at the end of the season). In their model setup, the fi rm sells the product 
during the selling season at price pr (or regular price) and at the end of the selling season 
at a salvage price ps (the latter is exogenously fi xed). Customers have valuation V for 
the product. They form an expectation of product availability and believe that they will 
obtain the product with a probability Ef at the end of the selling season. Therefore, cus-
tomers will only buy the product during the selling season if V 2 pr $  (V 2  ps) #  Ef or, 
equivalently, pr #  V 2 (V 2 ps) #  Ef.

The retailer holds a rational expectation that all customers will not buy the product 
during selling season unless pr #  V 2 (V 2 ps) #  Ef. Given this expectation, the retailer 
sets p*r 5 V 2 (V 2 ps) #  Ef . Also, it chooses Q* to maximize its profi t given below:

 p(Q 0  p*r) 5 p*r # min{d, Q} 2 w # Q 1 ps
# [Q 2 d ]1 (26.28)

 or   p(Q 0  p*r) 5 (p*r 2 ps) # min{d, Q} 2 (w 2 ps) # Q (26.29)

where, as before, d is the demand and has a probability and distribution function given 
by f(.) and F(.) respectively.

If customers’ expectation is rational (i.e. Eu 5 F(Q*) or the expectation of product 
availability equals to the actual fi ll rate during the selling season), then it can be shown 
that the optimal regular price and stocking quantity are

 p*r 5 ps 1 "(V 2 pr) # (w 2 pr)  (26.30)

 F(Q*) 5 1 2 Å
w 2 ps

V 2 ps
 (26.31)

Note that the optimal regular price is between w and V. Interestingly, the equilibrium 
stocking quantity Q* is lower than that of the standard newsvendor problem. The fol-
lowing inequality shows this result:

 F(Q0 ) 5 1 2
w 2 ps

V 2 ps
. 1 2 Å

w 2 ps

V 2 ps
5 F(Q*)  (26.32)

where Q0 is the optimal stocking quantity in the standard newsvendor problem.
Using the same numerical example for the optimal ordering quantity (26.20) in 
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the basic newsvendor model above, we have ps 5 s 5 $1 and V 5 p 5 $4. Hence 
F(Q*) 5 1 2 !(2 2 1/4 2 1) 5 0.5774, implying an optimal ordering quantity of 
94:12 units (i.e. 100 2 0:294 ? 20). Notice that this optimal quantity is smaller than 108.7 
units obtained before.

Dana and Petruzzi (2001) extend Petruzzi and Dada’s (1999) model by allowing cus-
tomers to actively choose whether or not to visit the retailer depending on its price p and 
stocking quantity Q, which are assumed to be known to the customers before they make 
their visit decision. Customers are heterogenous in two ways. First, they have a value of 
either V > 0 or V 5 0 for the product. Second, each customer has an outside option u. 
The number of customers with a positive value V (assumed to be continuous), d, has a 
support of [L, H] and a probability and distribution function of f(.) and F(.) respectively. 
The expected number of customers with positive value is µ 5 E(d). Similarly, the outside 
option value has a probability and distribution function of g(.) and G(.). The retailer 
must choose its price and stocking quantity ex ante (i.e. before observing the realizations 
of d and u).

Let û be the outside option of the marginal customer, the person who is indifferent 
between the outside option and visiting the store. Then the retailer’s total demand is 
d?G(û). Its total sales is min(Q, d ? G(û)), so the expected demand and sales are

 E [Demand( û) ] 5 3
H

L
x # G( û) # f (x) # dx 5 m # G( û)  (26.33)

 E [Sales(Q, û) ] 5 3
H

L
min(Q, x # G( û) ) # f (x) # dx 5 m # G( û) 2 E [d # G( û) 2 Q ]1 

(26.34)

Note that û is a function of the retailer’s price and stocking quantity. In fact û solves the 
following implicit function:

 û 5 f (Q, û) # (V 2 p)  (26.35)

where f(Q, û) is the probability that a random customer is served (i.e. fi ll rate). 
It is the ratio of the expected sales and demand and is given by (E [Sales(Q, û) ] / 
E [Demand( û) ] ) 5 1 2 (E [d 2 (Q/G( û) ) ]1/m) . The retailer’s expected profi t is

 p # E [Sales(Q, û) ] 2 w # Q (26.36)

Let z 5 (Q/G( û) ) . Then the fi ll rate can be rewritten as F(z) 5 1 2 (E [d 2 z ]1/m)  
and û can be solved using the revised implicit function û 5 F(z) # (V 2 p) . Since 
p 5 V 2 ( û/F(z) ) , the retailer’s optimization problem is to choose û and z to maximize 
the expected profi t given below:

 p(z,û) 5 cV 2
û

F(z)
d # G( û) # cm 2 3

H

z

[1 2 F(x) ]dx d 2 w # z # G( û)  (26.37)

The authors fi rst consider the case where the price is set exogenously. Here they show 
that a retailer that takes into account the effect of its stocking quantity on customers’ visit 
decision carries more inventories, attracts more customers, and earns a higher expected 



568  Handbook of pricing research in marketing

profi t than a retailer that ignores this effect. When price is set endogenously, they show 
that the two-dimensional optimization problem can be reduced to two, sequential, 
one-dimensional optimization problems by fi rst solving for z* locally and then given z* 
solving for u* globally.

Deneckere and Peck (1995) extend the standard newsvendor problem by incorporat-
ing competition. In their model setup, there are n fi rms and each fi rm i simultaneously 
chooses a stock quantity Qi and the price pi. Customers know both the stocking quantities 
and prices of all fi rms before making their store visit decision. It is assumed that leftovers 
are disposed at zero cost and there is no loss in goodwill associated with shortages (i.e. 
a 5 b 5 0 or Co 5 w and Cu 5 p 2 w). Note that the outside option of a customer for 
each fi rm is defi ned by other fi rms’ strategies. As before, the number of customers has a 
probability and distribution function of f(.) and F(.) respectively. The mean number of 
customers is denoted by µ. At equilibrium, customers choose a mixed strategy (ms1, . . ., 

msn) and msi represents the probability that a customer visits fi rm i. The fi ll rate of fi rm i 
given a stocking quantity Qi and msi is

 f (Qi 0  msi ) 5 E cmin(Qi,msi
# d)

msi
# d d  (26.38)

Hence, fi rm i’s expected profi t is given by

 Pi (pi, Qi ) 5 pi
# m # msi

# f (Qi 0  msi ) 2 w # Qi (26.39)

The authors show that an equilibrium in which all fi rms choose pure strategies, if it exists, 
is unique and is characterized as follows:

 Q*i 5

F 
21a1 2

w
V
b

n
 (26.40)

 p*i 5

w # F 
21a1 2

w
V
b # n

n 2 1

m # faF 
21a1 2

w
V
bb 1 w #

faF 
21a1 2

w
V
bb

v # (n 2 1)

 (26.41)

 msi 5
1
n

 (26.42)

The authors show that if n is sufficiently large, the above equilibrium always exists. In 
addition, they show that the optimal stocking quantity decreases with the purchase cost 
w, increases with the customer value V and is independent of the number of fi rms n. The 
optimal price, on the other hand, increases with V and decreases with n and is ambiguous 
with respect to w.

Dana (2001) extends Deneckere and Peck’s (1995) model by making stocking quanti-
ties unobservable before customers visit a fi rm. As before, let msi denote the probability 
with which a random customer visits fi rm i. Customers visit only one fi rm. There is no loss 
in goodwill for shortages and leftovers can be disposed at zero cost. The author consider 
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two closely related models. In the fi rst model (Bertrand model), fi rms commit to observ-
able prices before they choose their stocking levels. In the second model (Cournot model), 
fi rms commit to their stocking levels before they choose their prices. Here, a fi rm’s price 
acts as a ‘signal’ of the stocking level it chooses.

In the Bertrand model, taking prices and consumers’ subgame-perfect equilibrium 
strategies (ms1, . . ., msn) as given, fi rm i solves

 maxQipi
# 3

H

L
min(Qi, msi

# d) # f (x) # dx 2 w # Qi (26.43)

to determine the stocking quantity. The optimal stocking quantity Q*( pi, msi) is solved 
by the standard newsvendor condition given by F(Q*( (pimsi ) /msi ) ) 5 (pi 2 w/pi ) . 
Consequently, it can be shown that each fi rm sets a price to maximize consumer surplus. 
That is, p* 5 arg maxp$w (V 2 p) # f (F 

21 ( (p 2 w/p) ) ) , where f(.) is the fi ll rate as 
defi ned above.

In the Cournot model, it is assumed that customers conjecture that each fi rm has 
chosen the optimal stocking level given the fi rm’s observed price and its competitors’ 
equilibrium prices. Given this assumption, the author proves that there exists a unique 
symmetric pure-strategy equilibrium in which every fi rm offers a common price and con-
sumers’ equilibrium strategies satisfy msi 5 (1/n)  (similar to the results of Deneckere and 
Peck’s 1995 model.) The authors then show that the Cournot equilibrium price is always 
higher than the Bertrand price and that the difference depends on the number of fi rms. 
As the number of fi rms increases, the equilibrium price of the Cournot model converges 
to that of the Bertrand model. In both cases, it is shown that industry profi ts are strictly 
positive even when there are arbitrarily many fi rms.

4.  Dynamic pricing
In many situations, pricing decisions can be revised periodically in response to current 
information or market conditions. Static models that yield a single fi xed price would not 
be adequate in providing guidance on how prices should be adjusted over time. In this 
section, we review several dynamic pricing models and highlight the managerial insights 
that they provide.

We fi rst discuss the dynamic pricing model developed by Gallego and van Ryzin 
(1994). They consider a monopolist seller operating in a fi nite time horizon of length T. 
The seller has a fi nite inventory of N units to sell over the time horizon. The seller may 
adjust prices p(t) dynamically over time t [ [0, T]. Demand arrives according to a Poisson 
process with rate l. Each arriving customer has i.i.d. (independent and identically dis-
tributed) valuations for the product that follow distribution F. Therefore sales occur (at 
prevailing prices) according to a variable-rate Poisson process with intensity l(p) 5 l(1 
2 F(p)) dependent on the current price. In other words, during the small time interval 
[t, t 1 e), a customer arrives with probability le, and given that the current price is p(t), 
this arrival purchases with probability 1 2 F(p(t)). Units remaining at the end of the time 
horizon have no value. This model captures constraints in both inventory and time, and 
can be applied to travel industries (airlines and hotels), fashion retailing, as well as other 
seasonal or perishable items.

For this model, the seller’s pricing problem can be formulated as follows. Let J(n, t) 
denote the value function, representing the seller’s optimal continuation payoff at time 
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t and with n units of inventory remaining. Consider a small time interval [t; t 1e). The 
Hamilton–Jacob–Bellman (HJB) equation for this stochastic control problem can be 
written as

 J*(n, t) 5 sup
p

{l (p)e [p 1 J*(n 2 1, t 1 e) ] 1 (1 2 l (p)e)J*(n, t 1 e ) 1 o(e)  
(26.44)

Rearranging and taking limits, we obtain

 2
'J*(n, t )

't
5 lim

eS0

J*(n, t ) 2 J*(n, t 1 e )
e

 (26.45)

 5 sup
p

 l (p) [p 1 J*(n 2 1, t) 2 J*(n, t ) ] 5 0 (26.46)

where we have assumed regularity conditions (to interchange limits and supremums) 
and the last equality follows from the zero-derivative fi rst-order condition. The bound-
ary conditions are J* (n, T ) 5 0 (since remaining units have zero value) and J*(0, t) 5 0 
(there is nothing to sell). With these boundary conditions and the HJB equation, we can 
numerically compute the optimal price p*(n, t) corresponding to having n units on hand 
at time t. However, for a general demand intensity l(p), the optimal price does not admit 
an explicit characterization. Nevertheless, there is an intuitive interpretation of equation 
(26.46). The rate of change of the value function J*(n, t) is determined by two terms: the 
revenue accrued from consummating a sale at price p; and a loss of J*(n, t) 2 J*(n 2 1, 
t), which can be interpreted as the option value of retaining the nth unit for sale in the 
future.

In their analysis, Gallego and van Ryzin provide additional results. They show that 
the optimal prices p* (n, t) are decreasing in both n and t. Put differently, as the inventory 
level n increases, the optimal price drops; similarly, as we have less time to sell, the risk 
of having unsold units increases and thus the optimal price also falls. In addition, the 
authors consider a deterministic version of the problem. In this version, the instantane-
ous demand rate is now deterministic at l(p); that is, given price p, units are sold at this 
constant rate. They demonstrate that for this deterministic problem, the optimal solution 
is to set a fi xed price for the entire time interval. This optimal price is the maximum of 
p* and p0, where the p* is the price that maximizes the revenue rate pl(p) and p0 is the 
‘run-out’ price under which all N units will be sold out at exactly time T, i.e. l(p0) 5 N/T. 
This result is intuitive because when there is sufficient inventory, charging p* maximizes 
revenue, but when inventory is too low, it is preferable to sell all units at a higher price p0. 
(Here, an assumption that the revenue function pl(p) is quasi-concave is used.)

Let us now summarize the insights from the Gallego and van Ryzin model. First, 
optimal prices can be determined by assessing the tradeoff between sales at the current 
price and the option value of unsold units. Since this option value decreases with more 
inventory and also as time passes, optimal prices should also follow these trends. Second, 
the price dynamics in this model are driven primarily by demand uncertainty. In an 
analogous setup with deterministic demand, we see that a single fi xed price is optimal. 
Therefore, this model is useful in isolating the price dynamics that are important in envir-
onments with high demand uncertainty as well as other operational considerations such 
as inventory and time horizon constraints.
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Next, we turn to another class of dynamic pricing models. These models study inter-
temporal price discrimination by durable goods monopolists. The basic setup involves a 
monopolist fi rm selling a durable product to a fi xed market of consumers with heteroge-
neous valuations. The monopolist’s problem is to set prices optimally over time so that 
consumers are willing to buy. In particular, consumers form rational expectations over 
future prices and thus are not willing to buy if they anticipate more attractive purchase 
opportunities in the future. Therefore, while the previous class of models focuses on man-
aging uncertainties in the demand process, intertemporal price discrimination models 
focus on the strategic interactions with rational consumers.

We fi rst review the two-period model of Bulow (1982), which makes the analysis rather 
transparent. In this model, the monopolist faces demand curve of the form p 5 a 2 bq 
and sells over two periods. In other words, if a quantity q1 is sold in the fi rst period, the 
effective demand curve in the second period is p 5 (a 2 bq1) 2 bq, so the fi rm maximizes 
revenue from second-period sales by producing q2 5 (a 2 bq1)/(2b) units and selling them 
at price p2 5 (a 2 bq1)/2. Therefore rational consumers, upon observing that q1 units are 
sold in the fi rst period, will expect the second-period price to fall to p2. Now, the crucial 
step is to recognize that in order for q1 units to be sold in period 1, the price p1 must 
be chosen such that the marginal consumer (who has valuation a 2 bq1) is indifferent 
between buying and waiting. In other words, assuming the discount factor d, we need

 a 2 bq1 2 p1 5 d(a 2 bq1 2 p2 ) 5 d(a 2 bq1 ) /2 (26.47)

 p1 5 (1 2 d/2) (a 2 bq1 ) . (26.48)

Finally, we maximize the total revenue over both periods by solving

 Max
q1,q2

(1 2 d/2) (a 2 bq1 )q1 1 d(a 2 bq1 2 bq2 )q2 (26.49)

The key to this type of analysis is to characterize the reservation prices of consumers 
who form rational expectations over future prices by predicting the monopolist’s optimal 
actions. Given these reservation price constraints, the monopolist’s dynamic pricing 
problem can then be formulated and solved. As an illustration, consider the following 
example with a 5 b 5 $1 and d 5 0.5. At the profi t-maximizing solution, the monopolist 
sells q1 5 0.4 units at price p1 5 $0.45 in period 1 and sells q2 5 0.3 units at price p2 5 $0.3 
in period 2. The total profi t earned is $0.225.

The two-period model above can be extended to infi nite horizon settings. This was 
the setting considered by Coase (1972), who fi rst proposed the durable goods monopoly 
problem. He conjectures that durability eliminates monopoly power because as long as 
prices remain above marginal cost, the monopolist will have the incentive to lower the 
price (to sell additional units) after some consumers have bought, so these consumers will 
not be willing to buy in the fi rst place. Stokey (1981) solves the infi nite-horizon pricing 
problem and characterizes the monopolist’s optimal falling price path. In a related analy-
sis, Stokey (1979) assumes that the monopolist commits to the temporal price schedule 
and fi nds that a single fi xed price is optimal; this suggests that if the monopolist could 
commit, he would prefer not to price-discriminate over time. This point is evident from 
the numerical example above: if the monopolist could commit not to lower prices in 
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period 2, he essentially faces a single-period monopoly pricing problem, for which the 
optimal solution is to sell 0.5 units at price $0.50, yielding profi t $0.25 (which is higher 
than $0.225 above). Besanko and Winston (1990) isolate the effect of consumer rational 
expectations by comparing a model with strategic consumers (similar to Stokey, 1981) 
to a model with myopic consumers (in which consumers are not forward looking and 
purchase as soon as the price is below their valuations). They show that relative to the 
static monopoly price, prices are uniformly lower with strategic consumers and prices are 
uniformly higher with myopic consumers. In addition, prices start higher and fall faster 
when there are myopic consumers, as compared to strategic consumers.

A related model by Conlisk et al. (1984) studies intertemporal price discrimination 
when there is a continual infl ux of new consumers. (The models reviewed in the previous 
two paragraphs assume that all consumers are present at the start of the time horizon.) 
In some sense, this demand structure is similar to the customer arrival processes in the 
Gallego and van Ryzin setup, although customer infl ows are deterministic here (i.e. N 
consumers enter the market each period). There are two customer types: a fraction a are 
high-types with valuation VH and the rest are low-types with valuation VL. The discount 
factor is b per period. Consumer rational expectations and heterogeneous valuations con-
tinue to play a major role. In this environment, the authors show that the optimal solution 
involves cyclic pricing. Each price cycle, of duration n periods, is characterized by

 pj 5 (1 2 bn2 j )  VH 1 bn2 jVL (26.50)

for j 5 1, . . ., n. There are periodic ‘sales’ (when j 5 n) through which the monopolist 
‘harvests’ the low-valuation consumers that have accumulated in the market; prices sub-
sequently return to the ‘regular price’ level at the start of each cycle (  j 5 1) and gradually 
decline until the next sale at the end of the cycle (  j 5 n). In each price cycle, the price 
path is chosen so that high-valuation customers are willing to buy rather than wait for 
the sale; thus prices are higher the further away the anticipated sale is. Time discounting 
is quite important in driving the price cycles in this model. Another important element 
is the assumption that the monopolist is unable to commit to future prices. Sobel (1991) 
analyzes the case in which commitment is feasible, and he shows that the seller’s optimal 
solution is to commit to a fi xed price, similar to the above case where there is a fi xed 
market of consumers. This suggests that commitment power diminishes the usefulness of 
dynamic pricing when selling to strategic consumers.

Observe that the durable goods monopoly models described above do not involve 
inventory or time constraints. The fi rm is able to sell as many units as demanded at 
each price. Moreover, most models have infi nite time horizons. This is in contrast to the 
Gallego and van Ryzin setup, in which there is a fi nite inventory to sell over a limited 
time period, so each unsold unit has a dynamically evolving option value that shapes the 
optimal prices. The stark difference between these two strands of work motivates a third 
class of models, which incorporates both perspectives into a single framework. These 
relatively more recent models contain two main ingredients: operational constraints (i.e. 
in time and inventory) as well as strategic constraints (i.e. consumer rational expectations 
and sequential rationality). Aviv and Pazgal (2008) develop a model with Poisson cus-
tomer arrivals and analyze the optimal timing of a single price discount. Su (2007) uses a 
simpler deterministic demand structure to study the fi rm’s dynamic pricing problem.
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We review the basic model by Su (2007). The setup is based on the deterministic setting 
in Gallego and van Ryzin, where there is a fi nite inventory N to sell over a fi nite time 
horizon T. This puts the operational constraints in place. Next, the main ingredient of 
durable goods monopoly models is added: strategic customers, who arrive according to 
a deterministic fl ow process, form rational expectations of future prices and optimally 
choose between buying versus waiting. This behavior generates incentive constraints 
that prices must satisfy in order to induce purchases. The derivation of these incentive 
constraints is similar in spirit to the analysis in (26.47)–(26.48). With both operational 
and incentive constraints in place, the fi rm’s pricing problem can then be formulated and 
the optimal prices characterized. In this model, there is a mixture of strategic customers 
(with rational expectations) and myopic customers (who purchase as soon as prices are 
below their reservation values). Moreover, consumers may have high valuations (VH) or 
low valuations (VL). This creates four consumer segments: strategic-highs, strategic-lows, 
myopic-highs and myopic-lows. Depending on the relative sizes of these four segments, 
the optimal price path may take one of two forms: (1) prices start at VL and jump to 
VH at some point during the selling season; or (2) prices start high at VH and drop to an 
intermediate price p e (VL, VH) before the end of the season, when prices fall to VL. These 
results can also be extended to incorporate time discounting in the form of waiting costs 
(i.e. customers may face waiting costs when delaying purchases).

Two surprising results emerge from this model. First, note that a remarkably robust 
fi nding from the stream of revenue management literature following Gallego and van 
Ryzin is that optimal prices (on average) tend to fall as time passes. This is intuitive, given 
that the option value of unsold units declines over time. However, once strategic customer 
behavior is added to the picture, the optimal price path may either increase or decrease 
over time. This endogenous structure of optimal price paths depends on the composition 
of the customer population, and in particular, on the correlation between strategic behav-
ior and reservation prices. The main result is that, when strategic customers have higher 
reservation prices than myopic customers, optimal prices increase over time. However, 
in the reverse case, decreasing prices (e.g. markdowns) serve as an intertemporal price 
discrimination device because the seller is able to extract higher revenues from myopic 
customers who do not wait. This suggests that option value considerations (which gener-
ate declining price paths) are no longer dominant when there are strategic interactions 
in the marketplace. Second, a common fi nding in the durable goods monopoly literature 
is that strategic customers with rational expectations hurt seller profi ts. In the extreme 
case of the Coase conjecture, monopoly profi ts are completely eroded. However, by 
incorporating operational constraints, the model demonstrates that strategic behavior 
may benefi t the seller. This is because low-valuation customers, by competing with high-
valuation customers for product availability, may increase their willingness to pay. This 
effect is driven by the operational constraints, because otherwise there would be no notion 
of ‘product availability’. In essence, with limited inventory and limited time, rational 
consumers need not only consider future prices, but also future availability.

5.  Queueing models
For many situations, queueing models provide a useful way to capture capacity limita-
tions. We begin this section with a description of a standard textbook queueing model, 
and then review the classic work that incorporates pricing effects into queueing models.
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Consider a single-server queue facing a stream of customers who arrive over time 
according to a Poisson process of rate l. Service is rendered in a fi rst-come-fi rst-served 
basis, and service times for each customer are independently, identically and exponen-
tially distributed with rate µ. We denote r 5 l/µ and assume r < 1. It is well known 
that the average time spent in the queue, including service time, is 1/(µ 2 l). Therefore 
we may interpret the customer arrival rate l as demand and the service rate µ as the 
capacity of the queue. Then, increasing demand generates congestion effects that lead 
to longer waits for all customers. Observe that queueing models exhibit ‘soft’ capacity 
constraints in the sense that all customers will eventually be served. This is in contrast 
to operations models with fi nite inventory, in which some customers may not obtain 
the product in the event of a stock-out, so there are ‘hard’ capacity constraints. For this 
reason, queueing models are often applied to service contexts where the consequences 
of capacity limitations are more subtle. The waiting time that customers face as a result 
of queueing capacity µ may also be interpreted as a degradation in other dimensions 
of service quality.

The classic model that considers pricing in queueing models is proposed by Naor 
(1969). The fundamental premise is that customers, upon arrival and observing the 
current state of the queue, may choose whether to join. Customers earn a reward of R 
upon completion of service at the queueing station but incur waiting costs at a rate of 
C per unit time. Thus, if a customer arrives at a queue with n other customers in line, 
the expected payoff from joining is R 2 nC/µ (compared to zero from departing). This 
implies that the customer leaves the queue whenever the queue length exceeds a particular 
threshold, k 5 :Rµ/C;. Now, suppose that the server charges some price p. By the same 
logic, customers will now adopt the threshold strategy

 k(p)  5  : (R 2 p)m/C; (26.51)

i.e. join if n # k(p) and leave if n > k(p). This sets up the framework to study pricing 
effects in queues. Given a particular price p, we can characterize the resulting demand 
pattern. Consider the following numerical example. Suppose that customers arrive to 
a coffee stand at a rate of l 5 1 customer per minute, and that they can be served at a 
rate of µ 5 2 customers per minute. Further, customers value their coffee at R 5 $10 but 
assess waiting costs to be C 5 $1 per minute. Then, we see from equation (26.51) that 
customers are willing to wait in line for free coffee (i.e. when the price is p 5 0) as long 
as there are no more than k 5 20 customers in line. However, when the price p 5 $5 is 
charged, customers are no longer willing to wait in line when there are more than k 5 
10 people waiting.

From a revenue maximization perspective, the queue manager should optimally 
balance the tradeoff between a high price and the consequent reduction in demand. 
Corresponding to price p, customers join the queue only when the queue length is less 
than or equal to threshold k(p). From queueing theory (see, e.g., Gross and Harris, 1998; 
Wolff, 1989), the probability that a customer joins the queue is (1 2 pk(r)/1 2 pk(r) 11 ) . 
In other words, the demand function is

 D(p) 5 l
1 2 rk(p)

1 2 rk(p) 11
. (26.52)
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The manager should charge the optimal price p* that maximizes the expected revenue 
rate pD(p). This induces the customer threshold strategy k* 5 k(p*) that maximizes the 
fi rm’s revenue.

Alternatively, from a social planner perspective, we may write down the social welfare 
function as

 SW(p) 5 RD(p) 2 CN(p)  (26.53)

 5 lR
1 2 rk(p)

1 2 rk(p) 11
2 C c r

1 2 r
2

(k (r) 1 1)rk(p) 11

1 2 rk(p) 11
d  (26.54)

The fi rst term is the rate at which reward is earned, and the second term is the rate at 
which waiting cost is incurred; here, N(p) denotes the average number of customers in 
the queue at any point in time and can be expressed in terms of k(p) as shown above. 
Therefore the fi rst-best can be attained if the fi rm charges the price that maximizes social 
welfare SW(p). Let us denote the fi rst-best price as pFB and the resulting customer thresh-
old as kFB 5 k (pFB ) .

Apart from laying out the framework above, Naor (1969) also provides the following 
comparative results. He shows that

 k* , kFB , k0 (26.55)

where k0 denotes customers’ queue-joining threshold strategy in the absence of prices (i.e. 
p 5 0). Analogously, the following also holds:

 p* . pFB . 0. (26.56)

Using our numerical example above, we fi nd that the revenue-maximizing price is p* 5 
$8.50 while the socially efficient price is pFB 5 $5. Equivalently, the revenue-maximizing 
and fi rst-best queue-joining thresholds are k* 5 3 and kFB 5 10.

There are two key insights. First, revenue maximization leads to prices above the 
socially efficient level, and second, achieving fi rst-best requires positive prices (above 
marginal cost). The fi rst is consistent with standard monopoly pricing models, but the 
second is not. This is due to the negative congestion externality that is present in queueing 
models. Customers make their joining decisions in self-interest even though their current 
decisions will infl uence the well-being of future arrivals. In this situation, pricing can be 
used to address such externalities and attain fi rst-best.

Thus far, we have assumed that customers are served in a fi rst-come-fi rst-served order. 
In an interesting analysis, Hassin (1985) considers the opposite extreme of last-come-fi rst-
served priority rules. In this case, since all future arrivals will be placed in front of current 
customers, these current customers will take them into consideration. The consequence is 
that equilibrium-joining behavior will be socially optimal even in the absence of pricing. 
However, Hassin points out a strategic difficulty involved with last-come-fi rst-served 
queues. Now, customers have the incentive to leave and re-enter the join, presumably 
disguised as a new arrival. In the analysis, such behavior is assumed away, but in prac-
tice, substantial monitoring may be required. Certainly, there are also equity and fairness 
issues that have not been accounted for.
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This modeling framework has been shown to be robust along several dimensions. The 
restriction to customer threshold joining strategies is an important simplifi cation but 
currently holds only under the assumption of Poisson customer arrivals. Yechiali (1971) 
extends this setup to general arrival processes and shows that threshold-type policies is 
without loss of generality. In another paper, Yechiali (1972) extends the analysis to multi-
server systems. While we have considered only linear waiting costs and linear rewards, 
Knudsen (1972) analyzes general nonlinear cost and reward structures and shows that 
the basic insights still hold. Lippman and Stidham (1977) introduce discounting and 
also consider fi nite time horizons; they also fi nd that the structure of the results remains 
unchanged. This line of research demonstrates that for economic and managerial analy-
sis, it is usually sufficient to focus on simple models, such as single-server exponential 
systems. Nevertheless, even for such ‘simple’ models, there is usually a high degree of 
technical complexity involved. This is because for most dynamic queueing processes, 
characterizing performance measures (such as waiting time and number of customers in 
queue) is not an easy task.

Another modeling approach is to consider a static steady-state analysis of queueing 
systems. Here, we review the framework proposed by Mendelson (1985). The start-
ing point is a value function V (l), which represents the total value of performing 
the service when the aggregate arrival rate is l. We assume that V is concave, as this 
captures the decreasing marginal value of each additional unit of customers served. 
In other words, the value of service to the marginal customer is V’(l). Apart from the 
service rewards, there are also waiting costs due to capacity constraints. Letting W(l) 
denote the average wait time and C denote the waiting cost (per unit time), we see that 
corresponding to arrival rate l, the waiting cost incurred by each customer is CW(l). 
Therefore, in the absence of pricing, equilibrium arrival rates chosen by the customer 
population satisfi es

 V r (l ) 5 CW(l )  (26.57)

Similarly, when each customer faces an admission fee p, the equilibrium arrival rate is 
l(p) given implicitly by

 V r (l (p) ) 5 p 1 CW(l (p) )  (26.58)

We stress that for any price p, the equilibrium is unique since V is concave in l (so V9 is 
decreasing in l) and W is increasing in l. Therefore, there is a one-to-one relationship 
between prices and equilibrium arrival rates, and we may use p(l) to denote the price 
that can be used to induce arrival rate l. In this setup, the implicit assumption is that 
customers do not observe queue lengths when making joining decisions, but instead base 
their decisions on the expected steady-state queue lengths. This simplifi es the analysis 
since customer decisions no longer dynamically depend on the evolution of the stochastic 
queueing system.

Using this modeling approach, we may proceed to study profi t-maximizing pricing 
schemes and compare them to the fi rst-best. For a given price p, the fi rm’s revenue rate is

 II(p) 5 l (p)  
#

 p 5 l (p)  
#

 [V r (l (p) ) 2 CW(l (p) ) ] (26.59)
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In terms of l, we have

 II(l ) 5 [V r (l ) 2 CW(l ) ]. (26.60)

Therefore, we may maximize this expression to fi nd the profi t-maximizing arrival rate l*. 
The fi rm’s optimal price is then given by p* 5 p(l*). Similarly, we now characterize the 
fi rst-best outcome. In terms of arrival rate l, the social welfare function is

 SW(l ) 5 V(l ) 2 lCW(l )  (26.61)

Maximizing this expression over l, we obtain the fi rst-best arrival rate lFB. This can be 
sustained in equilibrium by imposing the fi rst-best price pFB 5 p(lFB ) . Consistent with 
Naor’s model, this setup also yields p* . pFB . 0.

This modeling framework has been extended to incorporate multiple customer classes. 
In Mendelson and Whang (1990), there are multiple customer classes, each with differ-
ent value functions Vi and waiting costs Ci. Customer classes are unobservable, so this 
is a hidden information problem. The authors analyze a priority pricing mechanism; 
that is, paying different prices corresponds to receiving different priorities in the queue 
and thus incurring different waiting times. The pricing mechanism can be designed to be 
incentive compatible and socially optimal. This analysis highlights an interesting feature 
of queueing models: with just a single server (producing a single good), the addition 
of priorities essentially introduces multiple different goods, which can be used to price 
discriminate amongst different customer classes. Subsequently, Lederer and Li (1997) 
extend this analysis to a competitive setting. In another paper, Van Mieghem (2000) 
introduces methodology to treat the case of convex delay costs (rather than linear delay 
costs assumed above). This modeling framework is quite fl exible and can be extended 
to include another dimension of choice by customers: apart from choosing whether to 
join the queue, customers may also choose how much service to request. In some sense, 
this resembles a quantity decision. Ha (2001) studies this scenario and derives optimal 
incentive-compatible pricing mechanisms.

6.  Conclusions
In this chapter, we introduce four broad areas of research in operations management that 
relate to pricing. A central theme that cuts across all areas is that customers are active 
and strategic, and they maximize their utility by choosing an appropriate buying and/
or operational action. In reviewing each area, we fi rst describe a classic model in opera-
tions management and show how subsequent research extends these standard models. 
Our review is deliberately selective because we want to show how research and model 
development accumulates in the literature. Our primary goal is to expose marketing and 
economic researchers to the rapidly growing areas of research in operations management 
that relate to pricing.

Table 26.1 summarizes the main fi ndings and insights in this chapter when consumers 
are strategic and actively engage in operational decision-making. In the EOQ inventory 
models, we show that pricing variability leads to higher shopping frequency and smaller 
average purchase quantities. Promotions can serve as an effective vehicle to transfer 
inventory-holding costs from the seller to consumers, and to price-discriminate between 
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different consumers. In the newsvendor inventory models, we show that low prices 
attract more store visits by consumers while high prices signal high product availability. 
In the dynamic pricing models, it is shown that stable prices increase profi ts because they 
discourage strategic timing of purchases. Dynamic pricing can also be effective if con-
sumers have different propensities to wait. Another consideration is that prices should be 
adjusted dynamically to refl ect the option value of unsold units over the selling horizon. 
In the queuing models, we show that pricing above marginal cost induces customers to 
consider the externality they impose on future customer arrivals, and that fi rms can price-
discriminate by establishing service priorities.

Besides making the problem contexts more realistic and richer, operational considera-
tions often infl uence the optimal price of the fi rm signifi cantly. Also, these considerations 
frequently generate more realistic equilibrium outcomes in competitive settings. While 
they are typically accompanied by more challenging analyses, the payoffs seem worth-
while because we begin to see an accumulation of knowledge and insights. The current 
approaches make a major step forward by focusing on making customers active (i.e. or 
in game-theoretic terms, they are players in the model). This is accomplished by making 
them more strategic and rational. Clearly, we do not need to restrict to these standard 
assumptions. In fact, research in psychology and experimental economics suggests that 
these assumptions are routinely violated even when customers are motivated by substan-
tial monetary incentives.

A promising and perhaps more radical approach is to assume that active customers are 
boundedly rational. One can extend the equilibrium analysis to include situations where 
mistakes are allowed but in the way that more costly mistakes are made less frequently 
than less costly mistakes (see McKelvey and Palfrey, 1995), and where a lack of rational 
expectation in belief formation among players is possible (see Camerer et al., 2004). 
Also, consumers care both about the fi nal outcomes as well as the changes in outcomes 
with respect to a target outcome, they are impatient in that they prefer instant gratifi ca-
tion, and they care about being treated fairly (see Ho et al., 2006 for a comprehensive 
review).
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